166 research outputs found

    Arthritis: where are the T cells?

    Get PDF
    T-helper (Th) lymphocytes contribute to arthritis pathogenesis by helping B cells to produce antibodies, by producing cytokines that activate effector cells involved in the destruction of cartilage and bone, and by contributing to osteoclast differentiation. There are murine models of arthritis, most notably collagen- and proteoglycan-induced arthritis, in which arthritis depends on T-cell recognition of antigens that are expressed in the joints. In spite of this, we still do not know the antigens recognised by arthritogenic Th cells in humans. Moreover, current evidence for Th cells exerting arthritogenic effector functions within the joints is only indirect

    IL-1 Family members in Health and disease

    Get PDF

    Induction of a B-cell-dependent chronic arthritis with glucose-6-phosphate isomerase

    Get PDF
    Antibodies specific for glucose-6-phosphate isomerase (G6PI) from T-cell receptor transgenic K/BxN mice are known to induce arthritis in mice, and immunization of DBA/1 mice with G6PI led to acute arthritis without permanent deformation of their joints. Because rheumatoid arthritis is a chronic disease, we set out to identify the capacity of G6PI to induce chronic arthritis in mice. Immunization with recombinant human G6PI induced a chronically active arthritis in mice with a C3H genomic background, whereas the DBA/1 background allowed only acute arthritis and the C57BL/10 background permitted no or very mild arthritis. The disease was associated with the major histocompatibility region sharing an allelic association similar to that of collagen-induced arthritis (i.e. q > p > r). All strains developed a strong antibody response to G6PI that correlated only in the C3H.NB strain with arthritis severity. Similarly, a weak response to type II collagen in a few mice was observed, which was associated with arthritis in C3H.NB mice. Mice on the C3H background also developed ankylosing spondylitis in the vertebrae of the tail. Both C3H.Q and B10.Q mice deficient for B cells were resistant to arthritis. We conclude that G6PI has the ability to induce a chronic arthritis, which is MHC associated and B-cell dependent. Thus, there are striking similarities between this and the collagen-induced arthritis model

    Inhibition of Inducible Nitric Oxide Synthase Prevents IL-1β-Induced Mitochondrial Dysfunction in Human Chondrocytes

    Get PDF
    Interleukin (IL)-1β is an important pro-inflammatory cytokine in the progression of osteoarthritis (OA), which impairs mitochondrial function and induces the production of nitric oxide (NO) in chondrocytes. The aim was to investigate if blockade of NO production prevents IL-1βinduced mitochondrial dysfunction in chondrocytes and whether cAMP and AMP-activated protein kinase (AMPK) affects NO production and mitochondrial function. Isolated human OA chondrocytes were stimulated with IL-1β in combination with/without forskolin, L-NIL, AMPK activator or inhibitor. The release of NO, IL-6, PGE2 , MMP3, and the expression of iNOS were measured by ELISA or Western blot. Parameters of mitochondrial respiration were measured using a seahorse analyzer. IL-1β significantly induced NO release and mitochondrial dysfunction. Inhibition of iNOS by L-NIL prevented IL-1β-induced NO release and mitochondrial dysfunction but not IL-1β-induced release of IL-6, PGE2 , and MMP3. Enhancement of cAMP by forskolin reduced IL-1β-induced NO release and prevented IL-1β-induced mitochondrial impairment. Activation of AMPK increased IL-1β-induced NO production and the negative impact of IL-1β on mitochondrial respiration, whereas inhibition of AMPK had the opposite effects. NO is critically involved in the IL-1β-induced impairment of mitochondrial respiration in human OA chondrocytes. Increased intracellular cAMP or inhibition of AMPK prevented both IL-1β-induced NO release and mitochondrial dysfunction

    Osteoarthritis-Induced Metabolic Alterations of Human Hip Chondrocytes

    Get PDF
    Osteoarthritis (OA) alters chondrocyte metabolism and mitochondrial biology. We explored whether OA and non-OA chondrocytes show persistent differences in metabolism and mitochondrial function and different responsiveness to cytokines and cAMP modulators. Hip chondrocytes from patients with OA or femoral neck fracture (non-OA) were stimulated with IL-1β, TNF, forskolin and opioid peptides. Mediators released from chondrocytes were measured, and mitochondrial functions and glycolysis were determined (Seahorse Analyzer). Unstimulated OA chondrocytes exhibited significantly higher release of IL-6, PGE 2 and MMP1 and lower production of glycosaminoglycan than non-OA chondrocytes. Oxygen consumption rates (OCR) and mitochondrial ATP production were comparable in unstimulated non-OA and OA chondrocytes, although the non-mitochondrial OCR was higher in OA chondrocytes. Compared to OA chondrocytes, non-OA chondrocytes showed stronger responses to IL-1β/TNF stimulation, consisting of a larger decrease in mitochondrial ATP production and larger increases in non-mitochondrial OCR and NO production. Enhancement of cAMP by forskolin prevented IL-1β-induced mitochondrial dysfunction in OA chondrocytes but not in non-OA chondrocytes. Endogenous opioids, present in OA joints, influenced neither cytokine-induced mitochondrial dysfunction nor NO upregulation. Glycolysis was not different in non-OA and OA chondrocytes, independent of stimulation. OA induces persistent metabolic alterations, but the results suggest upregulation of cellular mechanisms protecting mitochondrial function in OA

    Persistent humoral and CD4 + T H cell immunity after mild SARS-COV-2 infection—The CoNAN long-term study

    Get PDF
    Understanding persistent cellular and humoral immune responses to SARS-CoV-2 will be of major importance to terminate the ongoing pandemic. Here, we assessed long-term immunity in individuals with mild COVID-19 up to 1 year after a localized SARS-CoV-2 outbreak. CoNAN was a longitudinal population-based cohort study performed 1.5 months, 6 months, and 12 months after a SARS-CoV-2 outbreak in a rural German community. We performed a time series of five different IgG immunoassays assessing SARS-CoV-2 antibody responses on serum samples from individuals that had been tested positive after a SARS-CoV-2 outbreak and in control individuals who had a negative PCR result. These analyses were complemented with the determination of spike-antigen specific TH cell responses in the same individuals. All infected participants were presented as asymptomatic or mild cases. Participants initially tested positive for SARS-CoV-2 infection either with PCR, antibody testing, or both had a rapid initial decline in the serum antibody levels in all serological tests but showed a persisting T H cell immunity as assessed by the detection of SARS-CoV-2 specificity of T H cells for up to 1 year after infection. Our data support the notion of a persistent T-cell immunity in mild and asymptomatic cases of SARS-CoV-2 up to 1 year after infection. We show that antibody titers decline over 1 year, but considering several test results, complete seroreversion is rare. Trial registration German Clinical Trials Register DRKS00022416

    What Are the Peripheral Blood Determinants for Increased Osteoclast Formation in the Various Inflammatory Diseases Associated With Bone Loss?

    Get PDF
    Local priming of osteoclast precursors (OCp) has long been considered the main and obvious pathway that takes place in the human body, where local bone lining cells and RANKL-expressing osteocytes may facilitate the differentiation of OCp. However, priming of OCp away from bone, such as in inflammatory tissues, as revealed in peripheral blood, may represent a second pathway, particularly relevant in individuals who suffer from systemic bone loss such as prevalent in inflammatory diseases. In this review, we used a systematic approach to review the literature on osteoclast formation in peripheral blood in patients with inflammatory diseases associated with bone loss. Only studies that compared inflammatory (bone) disease with healthy controls in the same study were included. Using this core collection, it becomes clear that experimental osteoclastogenesis using peripheral blood from patients with bone loss diseases in prevalent diseases such as rheumatoid arthritis, osteoporosis, periodontitis, and cancer-related osteopenia unequivocally point toward an intrinsically increased osteoclast formation and activation. In particular, such increased osteoclastogenesis already takes place without the addition of the classical osteoclastogenesis cytokines M-CSF and RANKL in vitro. We show that T-cells and monocytes as OCp are the minimal demands for such unstimulated osteoclast formation. In search for common and disease-specific denominators of the diseases with inflammation-driven bone loss, we demonstrate that altered T-cell activity and a different composition—such as the CD14+CD16+ vs. CD14+CD16– monocytes—and priming of OCp with increased M-CSF, RANKL, and TNF- α levels in peripheral blood play a role in increased osteoclast formation and activity. Future research will likely uncover the barcodes of the OCp in the various inflammatory diseases associated with bone loss
    • …
    corecore